Search results

1 – 8 of 8
Article
Publication date: 7 March 2016

Yi Chen, Yihua Yao, Qinfen Lu, Xiaoyan Huang and Yunyue Ye

With the popularization of permanent magnet linear synchronous machines (PMLSMs) in recent years, the temperature rise has attracted increasingly attention since excessive heat…

Abstract

Purpose

With the popularization of permanent magnet linear synchronous machines (PMLSMs) in recent years, the temperature rise has attracted increasingly attention since excessive heat generated in the windings could deteriorate the electromagnetic performance. In order to solve this problem, adopting water-cooled system is an effective method. The purpose of this paper is to investigate a 12-slot/11-pole (12S/11P) water-cooled double-sided PMLSM, which adopts the all teeth wound concentrated winding and shifted armature ends.

Design/methodology/approach

Based on 2D finite element analysis (FEA), the thermal performances, such as temperature distribution, the optimization of water flow rate and the influence of demagnetization, are investigated under the condition of continuous duty. Then the maximum current density and average thrust force are calculated for PMLSMs with or without water-cooled system. Finally, the detailed comparison is made between single-sided PMLSM and double-sided PMLSM.

Findings

With water-cooled system, the thermal performance of PMLSM can be improved, such as an efficient decrease of temperature rise, restriction of permanent magnet demagnetization and a dramatic increase of the maximum thrust force. It is found that the water flow rate has a significant impact on temperature rise, which can be optimized according to demands.

Originality/value

Electromagnetic and thermal coupled analysis is proposed in this paper. It can approximately predict thermal performance and save the manual iteration time at the same time. This method also can provide as a reference of thermal analysis for other PMLSMs.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2016

Qinfen Lu, Huanwen Li, Xiaoyan Huang and Yunyue Ye

Due to the advantages of direct driven, high thrust density, and high efficiency, flux-switching linear motor (FSLM) is required for many applications, including aerospace and…

Abstract

Purpose

Due to the advantages of direct driven, high thrust density, and high efficiency, flux-switching linear motor (FSLM) is required for many applications, including aerospace and automotive. However, the vibration caused by detent force and difficulties in the assembly produced by the large normal force become the barriers that restrict its development. The paper aims to discuss these issues.

Design/methodology/approach

In order to improve the electromagnetic performance of double-sided multi-tooth FSLM (DMTFSLM), a yokeless DMTFSLM with moving primary is proposed and compared with normal DMTFSLM. Moreover, with theoretical analysis, the selection principle of slot-pole number combination is obtained. DMTFSLMs with four slot/pole combinations, 6s/16p, 6s/17p, 6s/19p, 6s/20p, are analyzed based on finite element analysis model. Finally, several parameters of this yokeless DMTFSLM have been optimized to obtain the better performance.

Findings

In yokeless DMTFSLM, it is found that the asymmetry of Back-EMF caused by the end-effect is eliminated, which leads to a better thrust force performance in comparison with the normal structure. The small attractive force between the secondary and the primary makes it easier for assembly and also can reduce the friction, which is more suitable for high-speed application. In addition, the best slot-pole combination rule is found through a simple theoretical analysis.

Originality/value

The yokeless DMTFSLM has excellent electromagnetic performance, such as high thrust density, negligible normal force, and small force ripple. It is a strong candidate for high-precision device.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2016

Yihua Yao, Yi Chen, Qinfen Lu, Xiaoyan Huang and Yunyue Ye

Permanent magnet linear synchronous machines (PMLSMs) have large thrust ripple due to the longitudinal end effect caused by the finite length of the armature compared with rotary…

Abstract

Purpose

Permanent magnet linear synchronous machines (PMLSMs) have large thrust ripple due to the longitudinal end effect caused by the finite length of the armature compared with rotary machines. The purpose of this paper is to analyze the influence of electric loading on thrust ripple performances based on a 12 slots/14 poles (12S/14P) PMLSM. Furthermore, the method of skewed PMs to reduce thrust ripple is investigated based on multi slices 2D finite element (FE) models.

Design/methodology/approach

The thrust ripple of PMLSM under open-circuit condition results from the slotting and the longitudinal end effects. Therefore, periodical model has been designed to clarify the effect of the longitudinal end effect. Under on-load condition, the thrust ripple increases and exhibits an effective component of thrust force. To analyze the thrust ripple under on-load condition, frozen permeability (FP) technique is employed. In addition, the method of skewed PMs is analyzed in this paper to obtain more smooth thrust force performance. The effectiveness of skewing accounting for skew angles, step skew numbers and slot/pole number combinations was highlighted.

Findings

The longitudinal end effect dominates the thrust ripple of PMLSM in both cases, i.e., open-circuit and on-load conditions. Under on-load condition, the second harmonic component of thrust ripple related to flux linkage harmonics increases significantly. Moreover, the effectiveness of skewed PMs is largely reduced with the increase of magnetic saturation. At last, a proper skew angle and step skew number are obtained for the conventional PMLSM with fractional-slot winding.

Originality/value

By 60 electrical degrees and two or three step skewed PMs, the thrust ripple can be decreased to a tolerable limite for conventional PMLSM. The thrust ripple harmonics contributed by longitudinal end effect and flux linkage harmonics are analyzed, respectively, which is beneficial to exploring other techniques such as adding end auxiliary teeth to obtain lower thrust force pulsation.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2016

Jiameng Shi, Hao Kong, Liren Huang, Qinfen Lu and Yunyue Ye

Nowadays, to simplify manufacture process and improve fault-tolerant capability, more and more modular electrical machines are being applied in industrial areas. The purpose of…

Abstract

Purpose

Nowadays, to simplify manufacture process and improve fault-tolerant capability, more and more modular electrical machines are being applied in industrial areas. The purpose of this paper is to investigate a novel modular single-sided flat permanent magnet linear synchronous motor (PMLSM), which adopts segmented armature with the required flux gaps between segments to enhance the performance.

Design/methodology/approach

Using 2D finite element analysis, the performances, such as open-flux linkage, back-EMF, average thrust force, thrust ripple, etc., are compared in different values of flux gaps, as well as different slot/pole number combinations (mainly odd numbers of poles). Finally, to show the difference of linear motor from rotary one, the detailed comparison is made between modular PMLSM and rotary PMSM.

Findings

Due to flux gaps, it is found the electromagnetic performances are worsened along with flux gap width increasing to modular PMLSMs having slot number higher than pole number, but some aspects of performances such as winding factor, open-circuit flux linkage, back-EMF and average thrust can be improved to those having slot number lower than pole number. Due to the end effect of linear format, the thrust ripple is not significantly improved.

Originality/value

It is concluded the proper flux gaps can be chosen to improve the performance of PMLSM with certain slot/pole combinations. A new structure of 12-slot-13-pole (hereinafter referred to as 12s/13p) PMLSM with fractional slot and alternative-teeth wound winding is designed.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2016

Xinxing Huang, Yihua Yao, Qinfen Lu, Xiaoyan Huang and Youtong Fang

In electric system of high-speed trains, neutral sections are set to balance the three-phase load. When passing neutral sections, the train should detach from the power supply for…

Abstract

Purpose

In electric system of high-speed trains, neutral sections are set to balance the three-phase load. When passing neutral sections, the train should detach from the power supply for a short time. To permanent magnet synchronous motors (PMSMs) traction system, the voltage of DC link will increase quickly due to the back-EMF of PMSM during this time. Although the energy consumption braking method can be adopted to consume the feedback energy. It not only wastes energy, but also causes more speed drop of the train. The paper aims to discuss these issues.

Design/methodology/approach

In order to get better performance when the train is under passing neutral section condition, a suitable control method is proposed, in which the torque command is set to zero and d-axis current order remains unchanged during passing neutral section. Based on a co-simulation model, the influences of this method on the PMSMs traction system are compared with that of traditional method, which is used in induction motors traction system. This model combines both control strategy and finite element model of motor, which can take the effects of magnetic saturation and power loss into consideration.

Findings

In PMSMs traction system, PMSMs work as generators during neutral section, and charge to DC bus, which may cause over-voltage damage. Moreover, there would be strong torque shock at the moment of power cut-off. It is finally found that, with the suitable control method, the high-speed train can pass the neutral section with less speed drop, less torque shock and little DC link voltage rise.

Originality/value

The control method proposed in this paper is easier to achieve and gets a better performance of PMSMs traction system in high-speed train compared with the traditional method. Furthermore, the co-simulation model is much closer to reality than the analytical model.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2016

Qinfen Lu, Liren Huang, Yunyue Ye, Xiaoyan Huang and Youtong Fang

Due to the merits of direct driven, high thrust density and high efficiency, PM linear synchronous motor (PMLSM) is pretty suitable for the long-stroke ropeless lifter. However…

Abstract

Purpose

Due to the merits of direct driven, high thrust density and high efficiency, PM linear synchronous motor (PMLSM) is pretty suitable for the long-stroke ropeless lifter. However, the vibration caused by detent force and difficulty of maintenance become the barriers that restrict its application. The paper aims to discuss these issues.

Design/methodology/approach

In order to simplify structure and improve driving performance, a novel PMLSM with segmented armature core and end non-overlapping windings is proposed. The analytical formula of detent force is derived based on energy method and harmonic analysis, which is validated by two-dimensional finite element analysis (FEA). Moreover, with erected parametric FEA calculation, the selection principles of slot-pole number combination and interval distance to this novel structure are obtained. Finally, the heat dissipation ability of conventional PMLSM and novel PMLSM are compared through thermal analysis.

Findings

In novel PMLSM, it is found that the (3m+1) and (3m+2) order harmonic components of thrust force are eliminated, which leads to a better driving performance in comparison with the conventional structure. Furthermore, the good heat dissipation ability of novel structure makes it possible for higher thrust density, which is crucial for ropeless lifter.

Originality/value

The novel PMLSM has excellent driving performance, simple structure for maintenance, possibility of modular production and high thrust density. It is a strong candidate for long-stroke ropeless lifter.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 November 2015

Qinfen Lu, Yanxin Li, Yunyue Ye, J.T. Chen and Z.Q. Zhu

Due to linear structure, linear switched flux permanent magnet machines (LSFPMMs) also may have odd pole primary, such as 9, 15, 21, etc., without unbalanced magnetic force in…

Abstract

Purpose

Due to linear structure, linear switched flux permanent magnet machines (LSFPMMs) also may have odd pole primary, such as 9, 15, 21, etc., without unbalanced magnetic force in equivalent rotary machines. The paper aims to discuss these issues.

Design/methodology/approach

In order to increase the thrust force density, the influence of some major design parameters, including split ratio, PM thickness, primary slot width and secondary pole width, are investigated by finite element analysis. For reducing the thrust force ripple under on-load condition, the end auxiliary teeth are adopted and their positions are also optimized.

Findings

This novel 9/10 primary/secondary poles LSFPMM has high average thrust force and low thrust force ripple by optimization. The results demonstrate that the odd pole primary may be a good candidate for long-stroke linear direct drive application.

Originality/value

A novel 9/10 primary/secondary poles linear switched flux permanent magnet machine is developed in this paper. The similar conclusions could be obtained for other LSFPMMs with odd pole primary.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 November 2015

Qinfen Lu, Yihua Yao and Yunyue Ye

The purpose of this paper is propose a novel integrative transverse-flux linear compressor (TFLC), which integrates compressor into a single-phase transverse-flux linear…

Abstract

Purpose

The purpose of this paper is propose a novel integrative transverse-flux linear compressor (TFLC), which integrates compressor into a single-phase transverse-flux linear oscillating actuator with moving magnet. Its main merit is having similar lamination as rotate motor which is easy to be stacked.

Design/methodology/approach

The simple lumped circuit model accounting for magnetic saturation, armature reaction and axial fringing effect is proposed. Based on this model, the magnetic field in air gap is calculated, and then the optimal PM height, PM length, split ratio and pole number are found. The predicted thrust force, stroke and system resonant frequency at no load are validated by prototype measurement. The relation of system resonant frequency and load are also measured.

Findings

In this novel TFLC, the optimal split ratio is in area of 0.54∼0.56 and pole number is 6. For designed stroke 10 mm, suitable PM height and length are 3 mm and 63 mm, respectively. By measurement, the predicted thrust force, stroke and system resonant frequency at no load are validated. The measurement also shows that the system resonant frequency can be improved from 30 Hz of no load to 39 Hz at 0.7 Mpa air load.

Originality/value

The novel TFLC has excellent driving performance and simple structure for maintenance. It can produce enough pressure to meet the requirement of refrigerator, so it is a strong candidate for refrigerating apparatus.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 8 of 8